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Abstract.
The behavior of granular matter depends greatly on the size of its elementary

components. Besides the well studied field of granulates made up of large sized particles
which ignore the interaction of the particles with the fluid or gas environment, the
physics of collection of tiny particles such as fine or superfine powders concerns a
majority of industrial applications.

This paper briefly outlines several basic behavior of powders showing that new
features come into play when the particle interaction with the surrounding gas is taken
into account. It starts from two key mechanisms: The first one arises when the typical
particle velocity is in the order of the free fall velocity of that particle, which simply
means that the fluid drag comes into play. The second one consists in considering
the powder cakes as a porous material. Combining these two basic mechanisms with
well-known granulate properties such as avalanching or heaping, leads to previously
ignored sets of plugging effects or surface instabilities resulting from what we call the
”volcano effect”. Furthermore, we show that, up to a certain extent, the physics of
fine powders interacting with gas, may mimic the physics of wetting liquids.
granular matter / powder / plugging / surface instability / volcano

Résumé.
Le comportement de la matière en grains dépend énormément de la taille de ses

composants élémentaires. A coté du champ, déjà bien exploré, des milieux granulaires
”secs” qui ignore l’interaction des particules avec les fluides environnants, la physique
des collections de petites particules telles que les poudres fines et super-fines a été très
peu explorée. Pourtant elle sous-tend une majorité d’applications industrielles.

Cet article décrit briévement quelques uns des principaux comportements fonda-
mentaux des poudres. Il s’intéresse à deux types de comportements fondamentaux. Le
premier tient compte du fait que la vitesse caractéristique de chute libre des particules
dans les gaz est du même ordre de grandeur que la vitesse d’entrainement, ce qui im-
plique qu’il faille tenir compte des effets de freinage visqueux. Le second considère un
empilement de particules comme un matériau poreux. En combinant ces deux effets
avec les propriétés bien connus des milieux granulaires telles que les effets d’avalanche
ou de mise en tas spontanée, on met en évidence des phénomènes de blocage et des
instabilités de surface qui résultent de ce que nous appelons ”l’effet volcan”. En outre,
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nous montrons que, dans une certaine mesure, la physique des poudres fines et sèches
peut s’identifier à la physique des liquides mouillants.

matériau granulaire / poudre / bouchage / colmatage / instabilité
de surface / volcan

1 Basic equations and classification of powders
In a recent past, most of the theoretical, experimental and simulated works
dealing with the physics of granular materials have considered collections of
large solid particles (i.e. typically larger than 100µm) or smaller particles un-
der vacuum. This simplification allows to neglect the complex interaction of
the surrounding gases or fluids with the moving solid particles [1]. Except for
the papers by Bocquet et al. and Herrmann, all the papers in this book start
from this hypothesis. On the other hand, the dynamic behavior of fine powders
[2][3][4][5][6][7] interacting with gases (fluidized beds) or liquids[8][9] is recog-
nized as the keystone of a large number of technological processes e.g.. in fine
chemicals and pharmaceuticals, ceramics and food industry. In nature, huge
fields of well known patterns such as dunes[10][11] and ripples result from sand-
wind interaction in deserts or sand-water interaction on sea shores.
In the following, we first remind the reader with a few basic equations dealing

with fluid-particle interactions and we derive a classification among different
species of granular materials which is akin to the classification first put forth by
Brown and Richards[12] in the seventies. Next we consider the classical situation
of plugging during a duct flow which is often met in industrial environment. We
show that the value of the angle of repose of a fine powder is markedly increased
when the powder is submitted to gas or air blow, thereby largely increasing the
probability to build up unwanted plugs. The last part of the paper is devoted
to the observation and models of the various kinds of instabilities obtained
when blowing a fine powder from below. We explain that several issues of the
physics of fine powders (or of larger particles in liquids such as slurries), up to
some extent, show similarities with the physics of wetting liquids.We suggest
the potential extrapolation of this work to geological situations.
Under normal conditions the kinetic and potential energies of large particles

such as desert sands (100µm dia.) are so large that these particles would be-
come Brownian at a preposterous temperature. In reverse, we can estimate the
diameter D of a solid particle which could be Brownian at room temperature.
We set kT ≈ mgD ≈ 1

2mv
2, where m is the particle mass, g the gravitational

acceleration and v a realistic velocity (say 1cm/s). We find that Brownian mo-
tion and thus temperature cannot be ignored in the case of particles whose size
is smaller than 1µm. These set of tiny particles are commonly called ”fumes”.
They are known to have infinite or very large deposit times.
First, we build up a significant number < (which is equivalent to the familiar

Reynolds number in hydrodynamics) which measures the ratio between the par-
ticle energy and the energy loss by laminar and turbulent drag in a fluid[13]. In
the case of laminar drag around a sphere, we get <l = 1

36
ρb
η Dv and in the case

of turbulent drag <t ≈ 1
0.24

ρb
ρ0
where ρb is the particle density, η and ρ0 the fluid

viscosity and density. Numerical estimates show that particle-fluid interaction
should be taken into account (< . 1) when particle size is on the order of 10µm.
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Generic Name Size Interaction
Powder Ultra fine 0.1− 1.0µm Temp. and gas
Powder Super fine 1− 10µm gas
Powder Granular 10− 100µm liquids
Granular solids 100− 3000µm viscous fluids
Broken solids > 3000µm viscous fluids

Table 1: Classification of granular materials with respect to particle-fluid inter-
action

Moreover, we note that due to laminar drag, the free fall velocity vff (when
the particle weight balances the Stokes force) of a solid sphere is given by

vff =
D2

18η
ρg (1)

As an example the free fall velocity of a glass sphere (R = 10µm) is about
25mm/s which is just the same value as for a 100µm solid particle falling in
water or for a 10cm large solid rock moving in A’a liquid lava or viscous palehoe
lavas. From this viewpoint, some features of the physics of super fine powders
in air, up to a certain extent, can mimic the behavior of granular particles in
liquids as well as of rocks in hot lavas et thus may deal with geological concerns.
Using these simple arguments, we can build up a classification of powders and
various granular materials as reported in Table 1 which is an extension of the
previously reported classification first put forth by Brown and Richards[12] in
the seventies :
Secondly, we observe that the compacted form of a powder can act as a

porous solid material with respect to a fluid flow. In the case of a poiseuille (i.e.
laminar which means relatively slow) flow, the velocity of the fluid emerging
from a powder cake whose thickness is L, is given by the Darcy equation

v =
K

η

∆P

L
(2)

Where ∆P is the difference of pressure between both ends of the cake and
K is the permeability of the powder which is on the order of magnitude of the
pores area.

2 Plugging : The angle of repose of blown pow-
ders

Firstly, we examine the problem of a compacted fine powder submitted to an air
blow which is forced through the granular medium. This situation is commonly
met in pharmaceutical or chemical industry, e.g. in air activated powder ducts.
Since frequent plugging happens in powders ducts, engineers tried to overcome
these problems using air blow. Unfortunately and as we show in the following,
even a very slight air blow at a very small velocity turns out to steepen the
angle of avalanche of the powders eventually leading to plugging and counter-
productive results.
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In order to analyse experimentally the steepening mechanism of the avalanche
angle due to gas blow, we setup the experiment sketched in the left hand side
part of Fig.1. The cylindric container (about one meter long and 5cm in di-
ameter) partially filled with a dry powder, can be inclined at any angle θ with
respect to horizontal. The experiment consists in imputing a given gas (nitrogen
or helium) at a flow rate Q which results in a measured pressure difference ∆P
between both ends of the tube. The tube is rotated around an axis perpendicu-
lar to the figure plane and the maximum avalanche angle is optically measured
using an external device. Series of typical experimental results are reported in
the right hand side part of Fig.1.

Figure 1: At left, the experimental setup : The monitored gas laminar flow
goes through the fine powder contained in the inclined leucite tube whose both
ends are closed by two micro-pore filters. The pressure difference between gas
input and output is also monitored. MPF are micropore filters. At right, the
experimental results : The dark line corresponds to theory. The square dots
are experimental results obtained with nitrogen and light hollow plastic spheres
(dia 25µm).

These experimental results show that the avalanche angle is quite sensitive
to air blow. For example, a very slow gas velocity as small as 3 mm/s is able
to stabilize the avalanche angle up to 180◦, which means that the powder flow
can be fully stopped even in a reverted vertical tube.
The basic equations for this situation read as follows.Consider a granular

material sitting at avalanche angle θ to the horizontal. The tangential force[15]
needed to have the avalanche slide down at θ is T = P sin θ = µN where P is
the weight of the superficial slice of material. Blowing an air flow perpendicular
to the surface, we add a normal force F (v). The total normal applied force is
N = P cos θ+ F (v) . Since an avalanche happens when tan θ = µ, the balance
reads as

F (v) =
P (sin θ − µ cos θ)

µ
(3)

Actually, the quantitative solution to this problem is far from being straigth-
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forward because the externally applied normal force due to the air flow is not
equivalent to simply adding a superficial weight to the sliding sheet. Experi-
ments will determine how the problem should be handled.
We start from a real example and we consider the limit case when the tube is

vertical and the powder material is kept from falling down using a slow vertical
air flow coming from below (θ = 180◦). Using a set of spherical hollow powder
particles (mean diameter 35 µm) we find that an air velocity of 2.64mm/s is
able to prevent the powder from falling down. Calculating the free fall velocity
vff of each of these particles, we find vff ' 14mm/s which is 6 times more.
This means that the powder should be considered as a whole in this problem
rather than as isolated particles even in this particular situation. Using the
measured pressure difference between the two ends of the powder cake (11.4
mbars), we calculate the force acting over the superficial slice of material due
to the pressure difference between both sides of this particular slice, assuming
a linear pressure distribution (poiseuille flow throughthe porous cake). We find
that this force is about 3.2.10−4N which, within a good approximation, equals
the weight of a single monolayered slice of powder. In brief, this result shows
that the problem of the steepening of the avalanche angle by a gas flow should
be handled by considering the powder cake as a stacking of separated sheets
of granular material, each one undergoing a part of the total pressure. Using
this consideration and Eq.3, we were able to satisfactorily fit the experimental
results reported in Fig.1.
A useful remark from the practial viewpoint, is compulsory : A very slight

gas flux going through a powder cake is able to steepen markedly the avalanche
angle. It ensues that care should be taken when attempting to favorize powder
flows in ducts or pipes using air blow as is commonly done in industry. Instead
of using a laminar and parallel gas flow, it should be much more efficient to
use convective or non-evenly distributed (possibly chaotic) air flux in order to
prevent the steepening effect we have just mentionned above.

2.1 Thick layer surface instability

Our present knowledge about instability of horizontal layers of granular solids
(i.e. large particles) under vertical vibrations is currently firmly established[16][17][18]
[19][7]. On the other hand, the vibrational heaping of a sand pile has motivated
a lively debate[20][21] [22] dealing with the influence of air influence[1] in the
phenomenology of sand heaping.
In reverse, basic features of the surface instability of tapped fine powder

layers are yet unknown. They can be readily observed starting from a simple
table-top experiment which duplicates into a small scale laboratory experiment,
a real industrial device used to empty powder carrying tankers : We use a
cylindrical transparent tube made of leucite or glass. We half fill the tube with
fine dry powder (e.g. glass beads, diameter 20µm). We keep the tube horizontal
and rigidly fixed at both ends, with the powder initially set flat and horizontal
thus giving a granulate thickness of about 10 mm in the center. We knock
gently and repeatedly at a very low pace and at a constant intensity onto the
center of the tube from below, applying vertically as brief taps as possible.
After a few taps (about ten to twenty), the surface, initially flat, smooth and
horizontal, turns out to exhibit ripples similar to those reported in Fig. 2a and
2b. Tapping more energetically but still keeping the intensity as constant as
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possible from one tap to the next, induces a pattern where the mean distance
between two successive ripples increase significantly. Furthermore and under
energetic tapping, a careful observation of the surface shows that, at every
tap, a limited number of particles may be ejected upwards starting both from
the apices of the hills and from the small plateaux which happen occasionally
between imperfectly jointed hills.

Figure 2: Three bird-eye views of the corrugated surface observed after twenty
shocks of constant amplitudes onto the underpart of the containers. Snapshots a
and b corresponds to the cylindrical container and are obtained at two different
shock amplitudes, larger in b than in a. Measurements are performed in the
median part of the pattern. Snapshot c is obtained in a rectangular metallic box
(size 20x40cm2) containing a layer of fine sand beach, tapped under the central
part. In this latter case, the pattern reproduces the transient deformation of
the underlying metallic sheet.

More reliable information has been obtained in the course of our experiments,
using a CCD (charge coupled device) camera above the tube in order to record
and process the successive patterns. We used a magnetically driven tapping
device and a microphone or an accelerometer stuck on the tube in order to
monitor the amplitude of the taps applied on the sample. Typical experimental
results are reported in Fig. 3

First, it is observed that, after a few taps, the surface displays a regularly
corrugated pattern made of a succession of jointed heaps sitting at the natural
avalanche angle. The crucial point here is that any further taps do not induce
any significant change in the pattern which thus can be considered as a steady
state with respect to further vertical shocks. Second, and this is a clue to the
understanding of the process, the characteristic wavelength of the pattern is
found to be directly proportional to the amplitude of the taps.
We call hT the altitude (starting from the bottom of the container) of the

apices of the corrugated surface, hB the altitude of the valleys of the corrugated
surface and hi the altitude of the initially horizontal surface of the granular
layer. θ is the avalanche angle of the powder, which is about 30◦ in our glass
beads powder. The wavelength Λ is given by Λ = 2(hT − hB) cot θ where
hT + hB = 2hi. Starting from Eq.2, we see that ∆P is proportional to the tap
amplitude A applied on the underpart of the tube so that the velocity vh of the
air emerging from the surface at altitude h can be written as vh = αA/h where
α is the coefficient of proportionality given by Darcy’s law which involves the
permeability of the granular material.
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Figure 3: Characteristic wavelength of the pattern in millimeter versus taps am-
plitude measured as the signal delivered by the microphone in tens of millivolts.
The dotted line shows the linear fit of the experimental results according to the
theoretical model.

We realize that the air slowing down process through the granular layer is
unable to account alone for the above described observations. If we imagine that
the incoming air pulse is unable to eject particles when reaching the apices of the
hills, we have αAT < hT vf . Calculating the ratio of the required initial velocity
to induce hills of height hT to the required initial velocity for the onset of the
corrugation, we get AT /Aic = hT /hi. Our experiments show that the ratio
hT/hi is only marginally larger than 1 while the observed amplitude ratio is
about 8 (Fig. 3). Thus, another process should be taken into account to explain
the observed features.
On both sides of the hills, the ascending air flux meets an inclined sheet

of particles which is on the verge of avalanching. Under these circumstances,
one particle subjected to the vertical incoming air flux bears a fraction of the
additional weight of the above lying particles involved in the avalanche layer
(see insert in Fig. 4)
This additional mass opposes the blowing up of the particles near the sur-

face and therefore stabilizes the inclined lateral surfaces against the incoming
air flow. We can build up a simplified equation for this screening effect consid-
ering that the mass of the concerned particle is increased by a factor Np sin θ, N
being the number of the above lying particles pertaining to a single sheet of the
inclined granulate and p being the unknown number of sheets possibly involved
in the avalanche process. Strictly speaking these particles participating to the
screening effect need not move, i.e. fall in an avalanche process. Considering
that all the particles pertainning to the superficial sheet and sitting above the
considered particle sitting at altitude h participate to the screening effect, we
have Np ' (hT − h) p/D. The required air velocity vah to eject the considered
particle sitting at altitude h is given by vah = vf (hT − h) p sin θ/D. This screen-
ing effect determines a cut-off altitude hC under which all the particles sitting
on the inclined lateral surface cannot be expelled by the air flux. This altitude
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Figure 4: At left, sketch of the ripples buildup showing the screening effect of
the inclined sides of the hills with respect to air blow from below. The white
arrows correspond to air trajectory while the black ones show the movement of
the particles. Insert : the balance of forces on a horizontal and on an inclined
surface. At right, sketch of the trajectories of the powder particles participating
to the intrinsic convection process when the heap are ejected above the plate
resulting from either taps or air blowing from below.

hC is given by the equation :

α
A−Ai
hvf

1
hT−hC
D p sin θ

' 1 (4)

In brief, the upper part of the hill ( when hC < h < hT ) is unstable whereas
the lowest one ( when hB < h < hC) is stable against vertical air blow from
below. We note that the steady state of the pattern should result from the
balance between the small number of expelled particles near the apices and the
number of particles which are re-injected into the bulk of the hills at every
taps (see black arrows in Fig. 3). We conjecture that this sort of trapping-
detrapping process should be independent of the size of the hills. We write
hT−hC = C(hT−hB) where C is the proportion of the unstable part of the hills.
It is a dimensionless constant independent of the height of the hills and of the
amplitude of the shocks. With this extra assumption, we get the characteristic
wavelength Λ of the pattern which is proportional to the amplitude of the shocks
in agreement with the measurements reported in Fig.2.

Λ ' 2α
C

A−Ai
hvf

D

p sin θ
cot θ (5)

We find that C = 25% of the hills are unstable if only one single layer of pow-
der is involved in the process. If, now, 5 layers of the superficial sheet participate
to the process as has been repeatedly observed in avalanche experiments, we see
that only 5% of the upper part of the hills are unstable against the incoming
air flux.
The delicate question of the stability of the particles sitting near the apices

of the pattern has motivated a further experiment which we performed firstly in
order to prove directly the validity of our model based on air-powder interaction
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and secondly to provide a visual insight into the question of the stability of the
apices of the air built pattern.
We use a millipore filter, commonly used in chemistry for filtering, in a re-

verse manner. A plastic filter (pores 3µm) is placed at the bottom of a commer-
cial cylindrical glass vessel which allows direct observation or image processing
with a CCD camera. In contact with the horizontal filter and above it, we lay
a thin layer of powder (about 8mm thick). Instead of sucking up through the
filter as is usually done, we blow from below, using either brief air pulses or a
continuous air flux.

Figure 5: The left photograph show the ripples obtained by using fast transient
air pulses. The middle photograph is obtained with a continuous air flow ex-
hibiting small craters (black points) sitting at the center of the myriads of small
fixed volcanoes. At right, an instantaneous close lateral view of eruptive micro
volcanoes. The volcano effect is clearly seen. The photograph scale is about 5cm
for the two left snapshot and about 3mm for the right one.

The photographs of the resulting surface corrugation are reported in Fig.
5. The upper snapshot shows up a surface corrugation made up of triangular
shaped ripples quite similar to the previously reported in our tapping experi-
ments (Fig. 2). The center snapshot corresponding to a gentle and continuous
air flow going through the powder cake is quite informative. Then the surface
corrugation exhibits a different aspect because the system has no time to relax
between separate successive perturbations as in the preceding experiments. As
expected from the preceding considerationn this experiment shows up a myriad
of stable small volcanoes organized around small craters (seen as black spots in
the snapshot) which spew out powder particles (right hand side snapshot).

2.2 Thin film instability : Analogy with wetting liquids

Keeping along this line, we make a step further considering now a thin slice
(typically a monolayer) of a fine powder spread out over a flat plate. Again, we
knock gently and repeatedly at a very low pace and at a constant intensity over
one corner of the glass plate, applying vertically as brief taps as possible. After
a few taps (about ten to forty), the surface, initially flat, smooth and horizontal,
separates into a collection of tiny rounded conical heaps looking like droplets
similar to those reported in Fig.6. Starting from the same initial conditions but
tapping more energetically while keeping the intensity as constant as possible
from one tap to the next, induces a pattern with bigger droplets separated by
a larger distance. The resulting patterns strikingly remind one of the Rayleigh-
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Taylor instability illustrated by the droplets structure obtained when turning
up a glass plate initially covered with a thin film of a wetting liquid. As we
will show in the following, this analogy is not fortuitous. It results from an
underlying similarity between the equations governing the wetting properties of
liquids and the behavior of powder piles interacting with a surrounding gas.

Figure 6: Above : Bird eye view of the pattern obtained after fourty taps over
a plate initially covered with an approximately uniform film of powder particles
(dia. about 30 microns). The mean distance between neighbouring heaps is
about 5mm. Below : The snapshot shows an oblique view of a few small heaps.
It exhibits the rounded shape of the apices due to the ”volcano effect”.

Using the same experimental setup as above, we get series of experimental
results as reported in Fig.7

Figure 7: Experimental results obtained with a monolayer slice of silica powder
(particle size about 35 µm).The dashed line is a theoretical best fit to Eq. (6)

Consider the initial situation when a thin slice of powder of thickness e
made of small spherical beads (diameter D) is evenly spread over a horizontal
flat surface whose area is S. Suppose that the powder has been gathered in a
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number of N disjointed identical conical piles having an angle θ to horizontal
and culminating at altitude h. These piles are evenly distributed over the area S.
The wavelength Λ of this pattern is the square root of the mean area occupied
by each pile

Λ =

r
π

3e tan2 θ
h
3
2 ∝ h

3
2 (6)

Starting from the same consideration as above, giving Eq. 4, the basic
equation governing the problem reads as

K∆P

DhC
= ρ

µ
1

18

C

1− C p sin θ
¶
ghC (7)

Written in this form, it can be seen as describing the balance between two
antagonistic pressures :

• An ”hydrostatic” pressure Pg = ρ∗ghC which accounts for the screening ef-

fect of the avalanche properties of the powder, where ρ∗ = ρ
³
1
18

C
1−C p sin θ

´
is the normalized density of the particles sitting near the apices and par-
ticipating to the avalanches.

• The equivalent of a Laplace-Young pressure, Pl (describing the pressure
difference at the interface of two liquids) which can be written

Pl =
K∆P

DhC
= γ∗

µ
2

hC

¶
(8)

where γ∗ plays the role of a surface tension and is defined by γ∗ = K∆P
2D

Eq. (7) describes the equilibrium of the analogue of a wetting liquid droplet[23]
on an horizontal plate. We mimic a conical powder pile with a half spherical
wetting material of height hC and curvature 2/hC and surface tension γ∗. This
analogue to a surface tension can be seen as resulting from the convective forces
(Fig.1) which drag powder particles from the surrounding surface and subse-
quently inject them into the powder pile. It has a purely dynamic origin and
results from the convective forces related to the volcano effect. From Eq. 7, we
get the cut-off length hC from the following relationship

hC '
µ
K∆P

D

1

ρ∗g

¶ 1
2

=

µ
2γ∗

ρ∗g

¶ 1
2

(9)

Going on with the analogy to wetting liquids[23], we can also define the
usual capillary length λ equating the hydrostatic pressure and the Laplace-
Young pressure so that λ = (γ∗/ρ∗g)

1
2 = hC/

√
2 and a related Bond number

Bo =
¡
ρ∗gh2C/γ

∗¢
Using Eq. (6), we find
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Wetting liquid Eq. Blown powder heap Eq.
Surface tension γ = dF

dl Convective forces γ∗ = K∆P
2D

Droplet radius R heap height hC
Laplace-Young law ∆P = 2γ

R Eq. 8 ∆P ∗ = 2γ∗
hC

droplet equilibrium 2γ
R = ρgR blown heap equilibrium 2γ∗

hC
= ρ∗ghC

Table 2: Basic equations for a wetting liquid and a blown powder

Λ =

r
π

3e tan2 θ

µ
K∆P

D

1

ρ∗g

¶ 3
4

=

r
π

3e tan2 θ

µ
2γ∗

ρ∗g

¶ 3
4

(10)

We calculate an approximate value for the surface tension γ∗starting from
Eq. (10) using typical values for Λ(5mm), e(20µm) and ρ∗ obtained for C = 5%.
We get γ∗ ' 2. 3 ∗ 10−5Nm−1 which means that this constant is about 3000
times smaller than the surface tension of pure water. As expected, λ and hC are
in the order of 1mm. Moreover, starting from Eq. (8) we can get an estimated
value for the pressure difference between the altitude hC and the base. We
consider that the permeability of the granular material is a fraction of the cross
sectional area of a single particle. Thus, we get ∆P in the order of 3 Pascal.
This quantity should be a fraction of the maximum possible air pressure due
to the total weight of the powder pile leaning on the basis surface S. This
maximum air pressure is found to be about 10 Pascal which therefore stands as
a correct order of magnitude. Table 2 sketches the analogy between the basic
equations governing the powder heap equilibrium and the equations governing
the equilibrium of liquid droplets.
Starting from this analogy and using e.g. Eq. (7), we can transcribe the

classical demonstration of the Rayleigh-Taylor instability for wetting liquids.
The standard analysis consists in examining the evolution of an infinitesimal
sinusoidal distortion of the initially flat surface. Note that the basic calculation
for liquids (found in text-books) leads to a wavelength dependence Λ ∝ (γ/ρg) 12 .
Here, the distortion is by no means infinitesimal. We rather introduced the
volume conservation condition which leads to Λ ∝ (γ∗/ρ∗g) 34 . But except for
this difference, the underlying phenomenology of the blown powder mimics the
standard Rayleigh-Taylor instability. A series of further experiments can be
found at the URL : www.espci.fr/DirectionJD/
Even if it has the merit to establish a connection between the (yet unknown)

description of blown powder properties and the (already known) wetting liquids
behavior, our simple theoretical explanation certainly lays itself open to several
criticisms. Note that this theoretical model may also well apply to the situation
of vibrated granular slurries in water[25] and maybe extrapolate to larger natural
situation involving real volcanoes fields and other landscapes. Note that it does
not convey any information regarding the development of the surface instability.
Such an analysis would involve the introduction of a sort of powder viscosity[24]
which is not considered in the present model dealing with the steady state of the
process. A time resolved scrutiny of the pattern growth would probably convey
information about this question.
I am grateful to P-G de Gennes, R. Jacobs, E. Raphael, I. Aronson and the
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granular group in Jussieu for stimulating discussions.
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